Quasi-cyclic dyadic codes in the Walsh--Hadamard transform domain

نویسندگان

  • B. Sundar Rajan
  • Moon Ho Lee
چکیده

A code is -quasi-cyclic ( -QC) if there is an integer such that cyclic shift of a codeword by -positions is also a codeword. For = 1, cyclic codes are obtained. A dyadic code is a code which is closed under all dyadic shifts. An -QC dyadic ( -QCD) code is one which is both -QC and dyadic. QCD codes with = 1 give codes that are cyclic and dyadic (CD). In this correspondence, we obtain a simple characterization of all QCD codes (hence of CD codes) over any field of odd characteristic using Walsh–Hadamard transform defined over that finite field. Also, it is shown that dual a code of an -QCD code is also an -QCD code and -QCD codes for a given dimension are enumerated for all possible values of .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Set of Cyclic Orthogonal Codes Acquired from Walsh-Hadamard Matrix

In this paper, the properties of the WalshHadamard codes used as spreading codes in QCDMA cellular systems are analyzed. It is shown that among Walsh-Hadamard codes, obtained from Hadamard Matrix , only k 2 ) , 2 ( k H k 1 + k codes are orthogonal to each other in all phases. Also, the performance of the Walsh Hadamard codes is compared with that of the Gold codes from the average cross-correla...

متن کامل

Integer Discrete Cosine Transform via Lossless Walsh-Hadamard Transform with Structural Regularity for Low-Bit-Word-Length

This paper presents an integer discrete cosine transform (IntDCT) with only dyadic values such as k/2n (k, n ∈ N). Although some conventional IntDCTs have been proposed, they are not suitable for lossless-to-lossy image coding in low-bit-word-length (coefficients) due to the degradation of the frequency decomposition performance in the system. First, the proposed M-channel lossless Walsh-Hadama...

متن کامل

Optimal Dyadic Modeling (ODM) Algorithm for Fast Computation of Tomographic Images

In this paper we apply the optimal dyadic modeling method for efficient computation of tomographic images, in view of the fact that the fast increase of sizes of tomographic data, reduction of computation demands of the reconstruction algorithms is of great importance. The present widely accepted algorithm for tomographic image reconstruction is the filtered-backprojection (FBP) algorithm using...

متن کامل

Binary Cyclic codes with two primitive nonzeros

In this paper, we make some progress towards a well-known conjecture on the minimum weights of binary cyclic codes with two primitive nonzeros. We also determine the Walsh spectrum of Tr(x) over F2m in the case wherem = 2t, d = 3+2 t+1 and gcd(d, 2−1) = 1.

متن کامل

On Various Types of Continuity of Multiple Dyadic Integrals

The paper presents a survey of results related to continuity properties of dyadic integrals used in solving the problem of recovering, by generalized Fourier formulas, the coefficients of series with respect to multiple Haar and Walsh systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2002